

Climate Change Advisory Council Secretariat

CB WG Meeting 8

23rd November 2023

Agenda

Time	Agenda Item
10:30	1. Opening of Meeting
10:35	2. Carbon Dioxide Removal and Negative Emissions Technologies
11:30	3. Biodiversity Considerations
12:30	4. Agriculture and Land Use Review
13:00	5. Carbon Budgets Work Plan
13:15	6. Next Steps and Agenda for next meeting
13:20	7. AOB
13:30	Meeting Close

1. Opening of Meeting

Action Number	Date Raised	Description	Owner	Due	Status
9	19/10/23	CBWG members to provide feedback and/or suggestions on the proposed topics for consideration in 2024 as outlined in the Meeting No. 7 presentation	CB WG Members	Nov 2023	Propose to Close. Open invitation to CBWG members to submit suggestions on topics for consideration.
10	19/10/23	Secretariat to share a note on the inputs required for macroeconomic analysis and a template regarding the temperature impact analysis with the core modelling teams for review and feedback	CCAC Secretariat/ CB WG Members	Nov 2023	Notes shared via email 31/10/23. Propose to Close 1 week after this meeting.

Agenda

Time	Agenda Item
10:30	1. Opening of Meeting
10:35	2. Carbon Dioxide Removal and Negative Emissions Technologies
11:30	3. Biodiversity Considerations
12:30	4. Agriculture and Land Use Review
13:00	5. Carbon Budgets Work Plan
13:15	6. Next Steps and Agenda for next meeting
13:20	7. AOB
13:30	Meeting Close

5. Carbon Budgets Work Plan: Topics for Meetings

CB WG Meeting No.	Proposed Date and Time	Topic(s) for Consideration
	1 Thursday 9 th March 2023 10:00 – 13:00	Carbon Budgets Methodology
	2Thursday 20 th April 2023 13:30 – 16:30	Carbon Budgets Methodology / Scoping of modelling work
	3Wednesday 31st May 2023 10:30 - 13:30	Vision for 2050 and Beyond/ Scoping of modelling work/
	4Thursday 29th June 2023 13:30 – 16:30	Climate Justice and 'Paris Test'/ Scoping of modelling work/ Macroeconomic Impacts of carbon budgets/
	5Thursday 27th July 2023 13:30 – 16:30	Focused discussion on methane/ Scoping of modelling work/
	6 Friday 8 th September 2023 13:30 – 16:30	Populations Projections/ Socioeconomic considerations
CB WG Workshop 1	Wednesday 13th September 2023 13:30 - 16:30	Input model parameters for 2030 starting points, scenario development and assumptions
	7Thursday 19 th October 2023 13:30 – 16:30	2024 Projections Process (EPA, SEAI & ESRI)/ International approaches to carbon budgets
	8Thursday 23 rd November 2023 10:30 – 13:30	Role of Negative Emissions/ Biodiversity Considerations/ Agriculture and Land Use Review
	9Friday 15 th December 2023 13:30 – 16:30	COP28 – Global Stocktake / 1 st Iteration of Core Modelling Results Moral Considerations for Irish Carbon Budgets

5. 2024 Meeting Schedule and Proposed Topics for Consideration

CB WG Meeting No.	Proposed Date and Time	Topic(s) for Consideration
10	Thursday 18 th January 2024, 13:30 – 16:30	IEA Net Zero Roadmap 2023 Update/ Analysis of warming impact of selected core scenarios (1 st iteration)/ Update on economic & macroeconomic analysis
11	Thursday 29 th February 2024, 9:30 – 12:30	Quantitative approaches to carbon budgeting for Parties to the Paris Agreement (Victorian Government Report)/ Energy and Power systems modelling (Paul Deane)
12	Friday 22 nd March 2024, 13:30 – 16:30	Agree inputs, parameters and assumptions for 2 nd Iteration of Modelling/
13	Friday 19 th April 2024, 13:30 – 16:30	
14	Thursday 23 rd May 2024, 13:30 – 16:30	2 nd Iteration of Core Modelling Results/
15	Friday 28 th June 2024, 13:30 – 16:30	Analysis of warming impact of selected core scenarios (2 nd iteration)/ Macroeconomic and Economic Modelling Results (based on 1 st and 2 nd iteration)
16	Thursday 25 th July 2024, 13:30 – 16:30	Agree inputs, parameters and assumptions for 3 rd Iteration of Modelling/
17	Thursday 29 th August 2024, 13:30 – 16:30	3 rd Iteration of Core Modelling Results/
18	Wednesday 18 th September 2024, 13:30 – 16:30	Macroeconomic and Economic Modelling Results (based on the 3 rd iteration) Analysis of warming impact of selected core scenarios (3 rd iteration)

5. Other Proposed Topics for Consideration in 2024

- Follow on discussion on the Just Transition principles and considerations in the Carbon Budget
 Process (NESC)
- Follow on discussion on biodiversity considerations (Yvonne Buckley/ Secretariat)
- Discussion on various aspects of aviation and maritime (Secretariat)
- Greenhouse gas air pollution interactions and synergies (Andrew Kelly)
- Economic assessment of climate change impacts and adaptation options in Ireland (ESRI)
- EU 2040 Climate Target and Greenhouse Gas Budget (ESAB)
- Follow on discussion on methane (Secretariat)

5. Carbon Budgets Workplan

Item	Description		2023									20	2024									
		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	Modelling / Analysis Iteration 1																					
1.1	Agree inputs, paramaters and assumptions																					
1.2	Core pathways development and modelling																					
1.3	Paris Test Assessment																					
1.4	Additional modelling and testing of results																					
1.5	Post-hoc analysis																					
2	Modelling / Analysis Iteration 2																					
2.1	Agree inputs, paramaters and assumptions																					
2.2	Core pathways development and modelling																					
2.3	Paris Test Assessment																					
2.4	Additional modelling and testing of results																					
2.5	Post-hoc analysis																					
3	Modelling / Analysis Iteration 3																					
3.1	Agree inputs, paramaters and assumptions																					
3.2	Core pathways development and modelling																					
3.3	Paris Test Assessment																					
3.4	Additional modelling and testing of results																					
3.5	Post-hoc analysis																					

- Scenario results from UCC (TIMES), Teagasc (FAPRI) and NUIG (GOBLIN) to be presented to CBWG on 15/12/23
- A paper on Irish Carbon Budgets: Some Moral Considerations (Kian Mintz-Woo) to be presented to CBWG on 15/12/23
- Analysis of warming impact of selected core scenarios from the 1st iteration of modelling and additional testing of scenario results from SEAI (NEMF) to be presented to CBWG on 18/1/24
- Update on macroeconomic and economic analysis to be discussed at the CBWG on 18/1/24

6. Agenda for Meeting No. 9: 15th December 13:30 - 16:30

1. COP28 - Global Stocktake

- Overview of the outcome of the global stocktake
 - In the context of European Climate Law, which sets out a binding objective of climate neutrality in the European Union by 2050 in pursuit of the long-term temperature goal set out in the Paris Agreement to hold "the increase in the global average temperature to well below 2°C above preindustrial levels" and pursue efforts "to limit the temperature increase to 1.5°C above preindustrial levels".

2. Presentation of the 1st Iteration of Core Modelling Results

 Presentation and discussion of the 1st iteration of core modelling results by Teagasc (FAPRI), NUIG (GOBLIN), and UCC (TIM)

3. Irish Carbon Budgets: Some Moral Considerations

A paper by Kian Mintz-Woo to be presented for discussion

6. Agenda for Meeting No. 10: 18th January 13:30 – 16:30

1. IEA Net Zero Roadmap 2023 Update

Christophe McGlade (IEA) to present on the IEA's Net-Zero by 2050 report

2. Analysis of warming impact of selected core scenarios (1st iteration)

 Joe Wheatley to present an assessment of the warming Impact of indicative emissions scenarios selected from the 1st iteration of modelling and analysis

3. Additional testing of scenario results

SEAI to present additional testing of scenario results from the 1st iteration of modelling with the NEMF

4. Update on economic & macroeconomic analysis

• The data requirements for the macroeconomic/economic analysis to be discussed in the context of the 2nd and 3rd iteration of modelling and analysis

7. AOB

• TBC

Carbon Dioxide Removal and its integration in European Union Climate Policy

Dr Oliver Geden

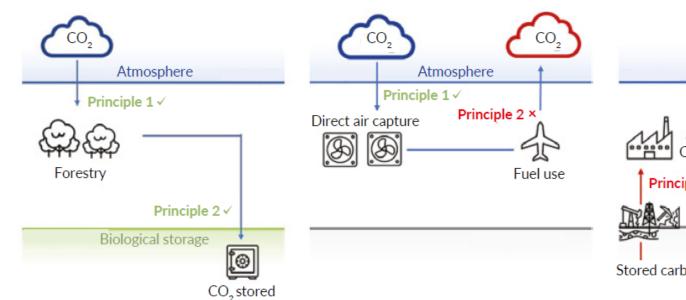
Head, SWP Research Cluster Climate Policy and Politics Vice-Chair, IPCC AR7 Working Group III

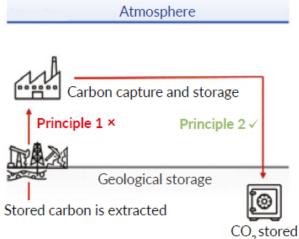
CCAC CBWG Meeting 8, 23 November 2023

Stiftung Wissenschaft und Politik German Institute for International and Security Affairs

Definition of Carbon Dioxide Removal

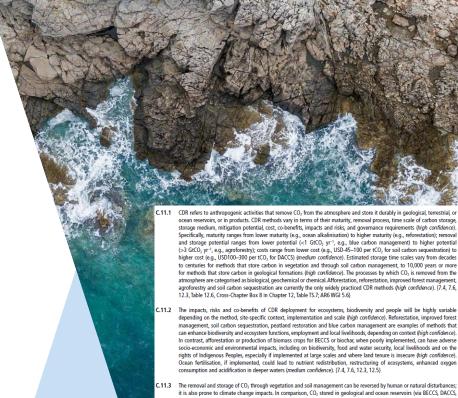
Anthropogenic activities removing carbon dioxide (CO₂) from the atmosphere and durably storing it in geological, terrestrial, or ocean reservoirs, or in products.


It includes existing and potential anthropogenic enhancement of biological or geochemical CO₂ sinks and direct air carbon dioxide capture and storage (DACCS), but excludes natural CO₂ uptake not directly caused by human activities.

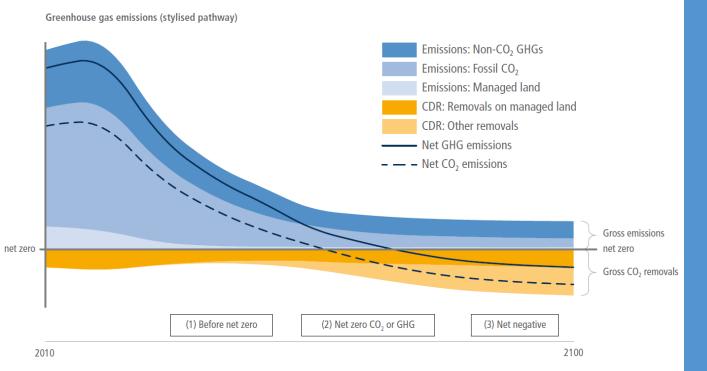

CDR and other Carbon Management Approaches

Carbon Dioxide Removal (CDR) Storage (CCS)

Carbon Capture & Utilization (CCU)


Carbon Capture &

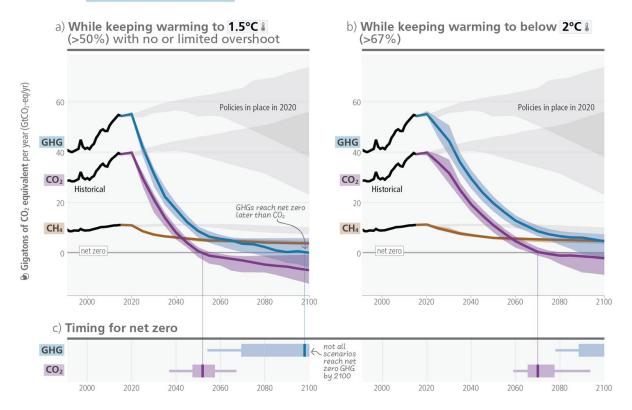
WG III Summary for Policymakers


C.11 The deployment of Carbon Dioxide Removal (CDR) to counterbalance hard-toabate residual emissions is unavoidable if net zero CO₂ or GHG emissions are to be achieved. The scale and timing of deployment will depend on the trajectories of gross emission reductions in different sectors. Upscaling the deployment of CDR depends on developing effective approaches to address feasibility and sustainability constraints especially at large scales. (high confidence) {3.4, 7.4, 12.3, Cross-Chapter Box 8 in Chapter 12}

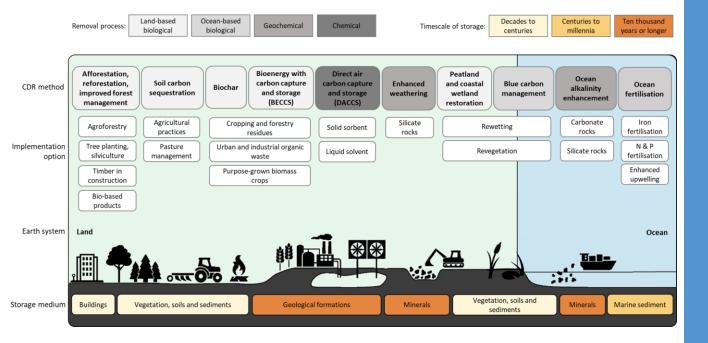
- C.11.3 The removal and storage of CO₂ through vegetation and soil management can be reversed by human or natural disturbances; it is also prone to climate change impacts. In comparison, CO2 stored in geological and ocean reservoirs (via BECCS, DACCS, ocean alkalinisation) and as carbon in biochar is less prone to reversal. (high confidence) (6.4, 7.4, 12.3)
- C.11.4 In addition to deep, rapid, and sustained emission reductions CDR can fulfil three different complementary roles globally or at country level; lowering net CO₂ or net GHG emissions in the near term; counterbalancing 'hard-to-abate' residual emissions (e.g., emissions from agriculture, aviation, shipping, industrial processes) in order to help reach net zero CO, or net zero GHG emissions in the mid-term; and achieving net negative CO, or GHG emissions in the long term if deployed at levels exceeding annual residual emissions. (high confidence) (3.3, 7.4, 11.3, 12.3, Cross-Chapter Box 8 in Chapter 12)
- C.11.5 Rapid emission reductions in all sectors interact with future scale of deployment of CDR methods, and their associated risks, impacts and co-benefits. Upscaling the deployment of CDR methods depends on developing effective approaches to address sustainability and feasibility constraints, potential impacts, co-benefits and risks. Enablers of CDR include accelerated research, development and demonstration, improved tools for risk assessment and management, targeted incentives and development of agreed methods for measurement, reporting and verification of carbon flows. (high confidence) (3.4, 7.6, 12.3)

Sixth Assessment Report

WORKING GROUP III — MITIGATION OF CLIMATE CHANGE



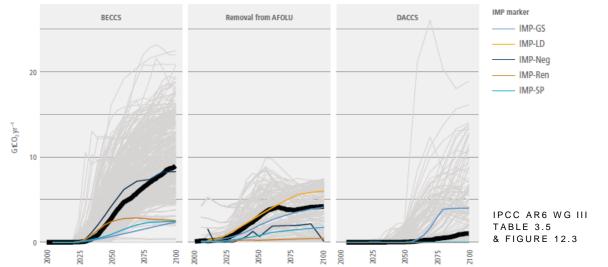
- Global & national pathways share basic components
- (Modelled) residual emissions mainly non-CO₂ GHGs from agriculture, but also CO₂ from industry, aviation and land-use
- Gross/Gross
 perspective more
 insightful than
 net only


Global modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot reach net zero CO₂ emissions around 2050

Total greenhouse gases (GHG) reach net zero later

- Synthesis Report focus on overshoot: exceedance of 1.5°C in early 2030s and possible return by 2100
- Limiting warming to 1.5°C by 2100 with limited overshoot requires net negative CO₂ emissions
- Drastically reducing net emissions 2019-2030 (GHG: 43%, CO₂: 48%) not enough to avoid exceeding 1.5°C temporarily but only to limit overshoot (to 0.1°C)

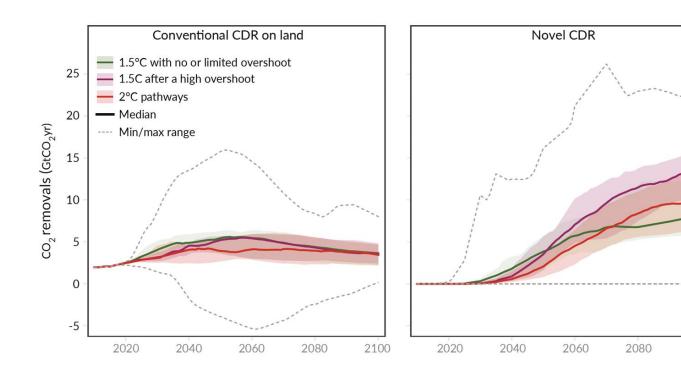
- Taxonomy of CDR methods based on AR6 WG I, highlighting removal process & timescale of storage
- Often several implementation options per CDR method
- CCS and CCU can be part of CDR methods, with durable storage of CO₂ from biomass or ambient air
- No dichotomy beyond land vs. ocean-based


Sixth Assessment Report

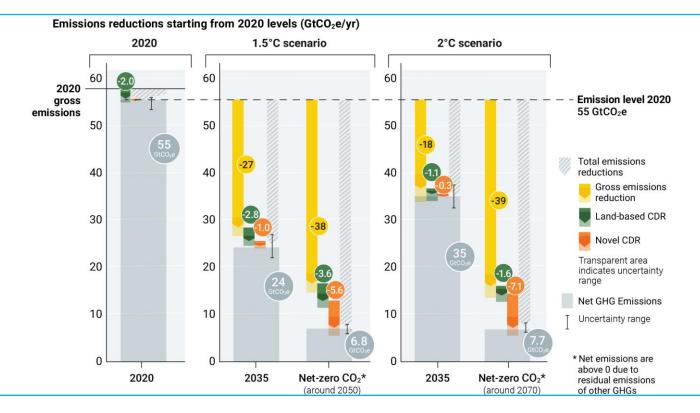
WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

CDR option		g to 1.5°C (>50%) ited overshoot		rming to 1.5°C high overshoot	C3: Limit warming to 2°C (>67%)			
	Quantity	Count	Quantity	Count	Quantity	Count		
CO ₂ removal on managed land including Afforestation/Reforestation ¹	262 (17–397)	64	330 (28–439)	82	209 (20–415)	196		
BECCS	334 (32–780)	91	464 (226–842)	122	291 (174–653)	294		
Enhanced weathering	0 (0-47)	2	0 (0-0)	1	0 (0-0)	1		
DACCS	30 (0–308)	31	109 (0 – 539)	24	19 (0–253)	91		

¹ Cumulative CDR from AFOLU cannot be quantified precisely because models use different reporting methodologies that in some cases combine gross emissions and removals, and use different baselines.



- No total CDR volumes until 2100 (mainly due to scenario database reporting standards and methodologies)
- Numbers depend on contextual factors, incl. assumptions on discount rate & residual emissions, and core mitigation strategies


Upscaling of CDR methods under different pathways

Expansion of land-based CDR but also rapid scaling up of novel CDR methods are needed.

2100

Global net-zero CO₂ mainly via emissions reductions, with shift from conventional land-based to novel CDR

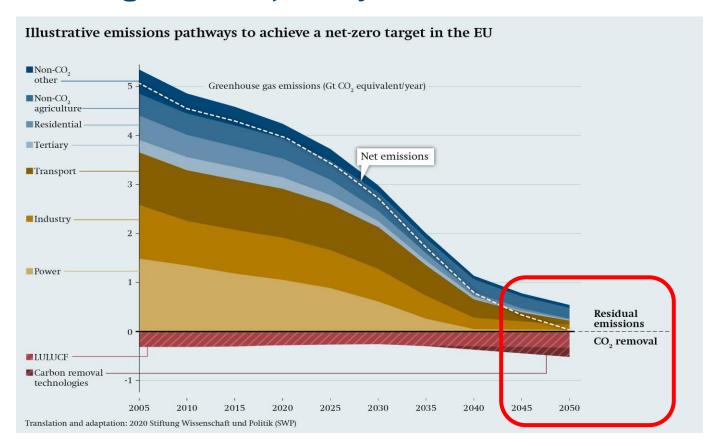
Sixth Assessment Report

WORKING GROUP III - MITIGATION OF CLIMATE CHANGE

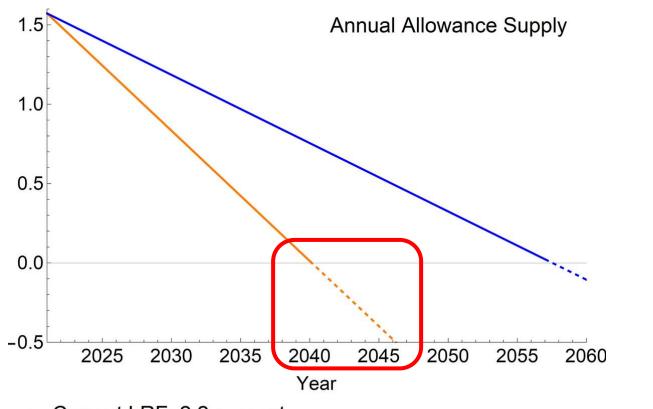
Table 12.6 | Summary of status, costs, potentials, risk and impacts, co-benefits, trade-offs and spillover effects and the role in mitigation pathways for CDR methods. Technology readiness level (TRL) is a measure of maturity of the CDR method. Scores range from 1 (basic principles defined) to 9 (proven in operational environment). Author judgement ranges (assessed by authors in the literature) are shown, with full literature ranges shown in brackets.

CDR method	Status (TRL)	Cost (USD tCO ₂ ⁻¹)	Mitigation Potential (GtCO ₂ yr ⁻¹)	Risk and impacts		Co-benefits		Trade-o	ffs and spillover	illover effects Role in modelled mitigation pathways					
DACCS	6	100–300 (84–386)	5–40	Increased energy and water use		Water produced (solid sorbent DAC designs only)			Potentially increased emissions from water supply and energy generation		In a few IAMs; DACCS complements other CDR methods	12.3.1.1			
Enhanced weathering	3–4	50–200 (24–578)	2-4 (<1-95)	Mining impacts; air quality impacts of rock dust when spreading on soil	enhanced	Enhanced plant growth, reduced erosion, enhanced soil carbon, reduced soil acidity, enhanced soil water retention			Potentially increased emissions from water supply and energy generation		In a few IAMs; EW complements other CDR methods	12.3.1.2			
Ocean alkalinit enhancement	1-2	40–260	1–100	Increased seawater pH and saturation states may impact marine biota. Possible release of nutritive or toxic elements and compounds. Mining impacts		ocean acidification		CO ₂ and dus	ncreased emissions of st from mining, trans nent operations		No data	12.3.1.3			
Ocean fertilisation	ecosystem, enhanced oxygen consumpti	Nutrient redistribution, restructuring of the ecosystem, enhanced oxygen consumption and acidification in deeper waters, potential for decadal-to-millennial-scale return to the	Increased productivity and fisheries,			deoxygenati of macro-nu	ocean acidification, ion; altered meridior trients as they are u ertilised region and l	tilised	No data	12.3.1.3					
				atmosphere of nearly all the extra carbon removed, risks of unintended side effects		CDR method	Status (TRL)	Cost (USD tCO ₂ -1)	Mitigation Potential (GtCO ₂ yr ⁻¹)		Risk and impacts		Co-benefits	Trade-offs and spillover effects	Role in mitigation
Blue carbon	Blue carbon Insufficient data. estimates			If degraded or lost, coastal blue carbon ecosystems are likely to release most of their carbon back to the atmosphere; potential for sediment contaminants, toxicity, bioaccumulation and biomagnification in organisms; issues related to altering	Potential and can adaptation	Afforestation/ reforestation	8–9	0–240	0.5–10	disease, pe Reduced ca	f carbon removal through wildfin ests may occur. atchment water yield and lower ter level if species and biome opriate	Enhanced employment and local livelihoods, improved biodiversity, improved renewable wood products provision, soil carbon and nutrient cyding. Possibly less pressure on primary forest Increased crop yields and reduced non-CO ₂ emissions from soil; resilience to drought		Inappropriate deployment at large scale can lead to competition for land with biodiversity conservation and food production	Substantial co IAMs and also sectoral studie
management in coastal ecosystems	2–3	range from ~100 to ~10,000	pe from <1 O to		acidificat human n terrestria	Biochar	6–7	10-345	0.3-6.6	production	and GHG emissions from n; biodiversity and carbon stock unsustainable biomass harvest			Environmental impacts associated with particulate matter; competition for biomass resource	In developmen global mitigat simulated by I
				on sediment redeposition and natural marsh	feed add	Soil carbon				Rick of inco	reared pitrous ovide			Attempts to increase carbon sequestration	In developme

for sediment contaminants, toxicity, bioaccumulation and biomagnification degradability of coastal plants; use of subtidal areas for tidal wetland carbon		Potential and can adaptatic	Afforestation/ reforestation	8–9	0-240	0.5–10	disease, pests may occur. Reduced catchment water yield and lower groundwater level if species and biome are inappropriate	improved biodiversity, improved renewable wood products provision, soil carbon and nutrient cycling. Possibly less pressure on primary forest	Inappropriate deployment at large scale can lead to competition for land with biodiversity conservation and food production	Substantial contribution in IAMs and also in bottom-up sectoral studies	7.4
		acidificat human n terrestria	Biochar	6–7	10–345	0.3-6.6	Particulate and GHG emissions from production; biodiversity and carbon stock loss from unsustainable biomass harvest	Increased crop yields and reduced non-CO ₂ emissions from soil; resilience to drought	Environmental impacts associated with particulate matter; competition for biomass resource	In development – not yet in global mitigation pathways simulated by IAMs	7.4
on sediment redeposition and natural marsh accretion; abusive use of coastal blue carbor as means to reclaim land for purposes that degrade capacity for carbon removal	or materi	Soil carbon sequestration in croplands and grasslands	8–9	-45–100	0.6–9.3	Risk of increased nitrous oxide emissions due to higher levels of organic nitrogen in the soil; risk of reversal of carbon sequestration	Improved soil quality, resilience and agricultural productivity	Attempts to increase carbon sequestration potential at the expense of production. Net addition per hectare is very small; hard to monitor	In development – not yet in global mitigation pathways simulated by IAMs; in bottom-up studies: with medium contribution	7.4	
	Competition for land and water resources, to grow biomass feedstock. Biodiversity and carbon stock loss if from unsustainable	Reductio optimal u health be can enha	Peatland and coastal wetland restoration	8–9	Insufficient data	0.5–2.1	Reversal of carbon removal in drought or future disturbance. Risk of increased methane emissions	Enhanced employment and local livelihoods, increased productivity of fisheries, improved biodiversity, soil carbon and nutrient cycling	Competition for land for food production on some peatlands used for food production	Not in IAMs but some bottom-up studies with medium contribution	7.4
	biomass harvest		Agroforestry	8–9	Insufficient data	0.3-9.4	Risk that some land area lost from food production; requires high skills	Enhanced employment and local livelihoods, variety of products, improved soil quality, more resilient systems	Some trade-off with agricultural crop production, but enhanced biodiversity, and resilience of system	No data from IAMs, but in bottom-up sectoral studies. with medium contribution	7.4
			Improved forest management	8–9	Insufficient data	0.1–2.1	If improved management is understood as merely intensification involving increased fertiliser use and introduced species, then it could reduce biodiversity and increase eutrophication	In case of sustainable forest management, it leads to enhanced employment and local livelihoods, enhanced biodiversity, improved productivity	If it involves increased fertiliser use and introduced species, it could reduce biodiversity and increase eutrophication and upstream GHG emissions	No data from IAMs, but in bottom-up sectoral studies with medium contribution	7.4

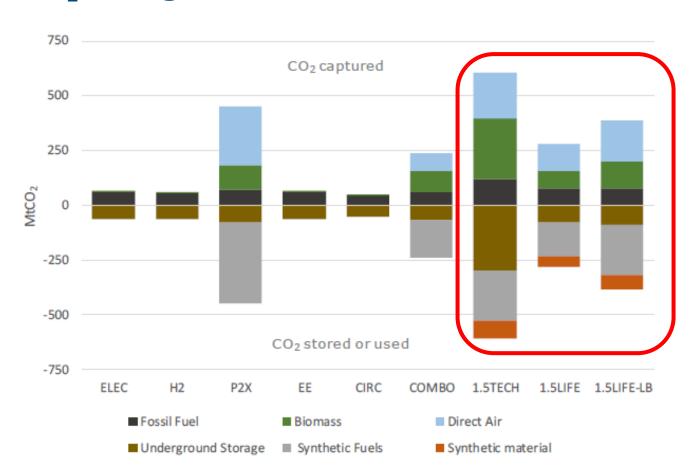

0.5-11

15-400


5-6

BECCS

EU Mitigation Trajectory until 2050



ETS-I trajectory creates need to integrate CDR

- Current LRF: 2.2 percent
- Fitfor55 LRF: 4.2 percent (applied from 2021 onwards)

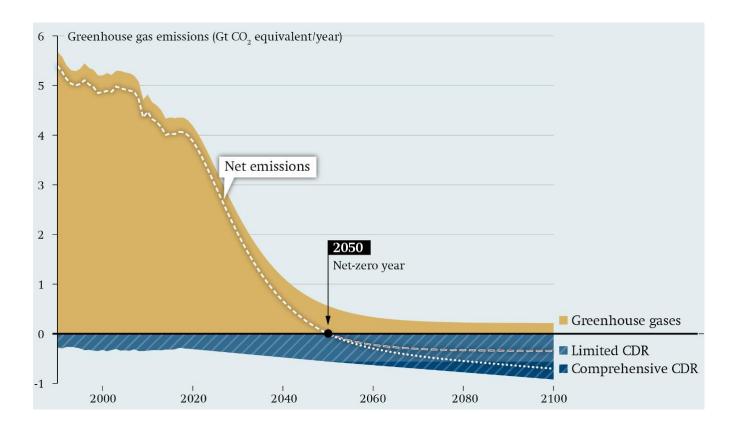
CO₂ Storage and Utilization in EU in 2050

In-Depth Analysis in support of COM(2018) 773 final

CDR Policy in Europe

What do we have already...

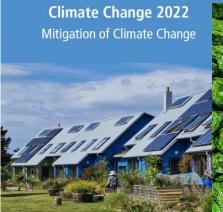
- LULUCF: Regulation (EU) 2023/839, amending Regulation (EU) 2018/841
- EU ETS Innovation Fund (e.g., BECCS Stockholm)
- CRCF proposal, currently under negotiation in EP & in Council, 2022/0394(COD)
- Expert group on carbon removal (methodologies)


What we will see in the near future...

- Clarification role of CDR to achieve EU 2040 target (and maybe already in EU NDC for 2035), in view of the role of CDR to allow for differentiation among Member States towards 2050 (*Union-wide* net-zero GHG target)
- Clarification role of CDR in EU ETS (COM Report 2026, CDR in ETS Directive for 2031-2040)

Some developments in Member States

- LULUCF 2030 targets for all Member States (all net-negative, incl. NL, DEN and Ireland)
- Germany: strategy on residual emissions and CDR (incl. non-LULUCF CDR targets) in 2024
- Denmark: net-negative GHG emissions target 2050 (-110%)
- Sweden: reverse auctioning scheme for BECCS (?)


EU Post-2050: what comes after *Net Zero*?

O. Geden/F. Schenuit 2020: Unconventional Mitigation (SWP Research Paper)

Thank you!

Sixth Assessment Report of the Intergovernmental Panel on Climate Change

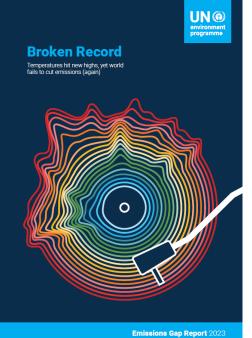
Carbon Dioxide Removal

A global, independent

scientific assessment of Carbon

Dioxide Removal

1st EDITION


CLIMATE CHANGE 2023
Synthesis Report

INTERGOVERNMENTAL PANEL ON Climate change

ipcc

Biodiversity considerations of carbon budgets - developments

Yvonne Buckley, Carbon Budgets Working Group

- Talk given to All Island Biodiversity & Climate Research Network (AICBRN)
 members meeting on biodiversity assessment of carbon budgets
- Workshop arising from AICBRN talk AICBRN Biodiversity assessment of carbon budgets working group (ABC) met
- Updating Gorman et al. (2023) recommendations (post hoc assessment)
- Updating modelling briefs to incorporate biodiversity considerations (a priori assessment)
- Held workshop & completed report on Nature-based Solutions in Ireland
- Draft letter to CCAC

Carbon budgets to 2050

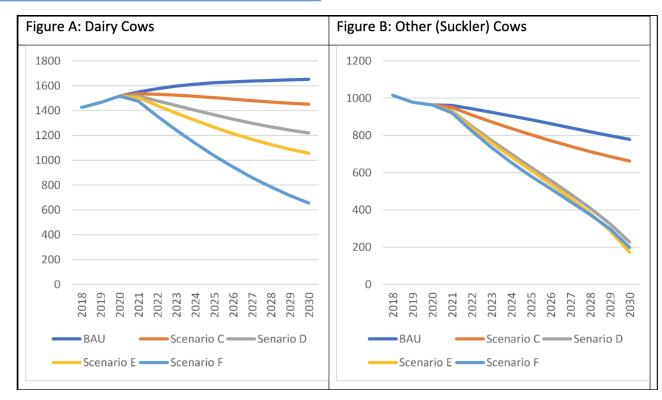
- CB1: 2021-2025 behind targets
- CB2: 2026-2030 (51% reduction target)
- CB3: 2031-2035 finalization
- CB4: 2036-2040 proposal
- 2050 climate neutral (Net Zero) target
- Electricity
- Transport
- built environment (residential, commercial, public sector)
- industry and other
- Agriculture
- land use, land use change and forestry no sectoral emissions ceiling yet

"it is possible to implement carbon budgets while protecting and enhancing biodiversity. However, it is critical that further pressure on biodiversity from all aspects of climate mitigation measures is avoided, in particular from poor siting of renewable energy infrastructure and inappropriate land-use change such as over reliance on, or poor siting of, mono-species afforestation. Care must be taken to identify and implement measures which deliver 'synergistic gains' for climate mitigation, biodiversity protection and restoration and catchment resilience"

CCAC Carbon Budgets Technical Report 2021

"Potential synergies and conflicts between biodiversity and the other elements of the National Climate Objective have received limited attention and need to be further explored."

Key indicators for Land Use Land Use Change & Forestry Sector


Potential additional indicators rimplementation of measures	required to monitor	NCAP 2021 2030 target	NCAP 2023 2030 target
Management of organic soils and peatlands	Rehabilitation of degraded peatland	65,000 ha	78,000 ha
	Improved management of forest on organic soils	No target specified	No target specified
Grasslands management	Rewetting, water table management of grassland	80,000 ha	80,000 ha
	Agroforestry	No target specified	No target specified
	Hedgerows (establishment and removal)	No target specified	No target specified
	Multi-species sward	No target specified	No target specified
Tillage	Cover crop	50,000 ha	50,000 ha
	Straw incorporation	10%	55,000 ha

- How do we factor biodiversity into recommendations for carbon budgets (up to 2040)?
- What does biodiversity look like in a Net Zero world? (2050) (<1 rotation of Sitka Spruce!)
- What are the potential risks for biodiversity from the actions needed to achieve future carbon budgets?
- Can we manage those risks with further actions?
- Direct win-wins for climate & biodiversity action?
- Trade-offs?
- How do we factor in potential benefits of reduced climate change due to effective climate action?
- Land use will be critical and there will be conflict between proposed uses

Working group on effects of climate action on biodiversity?

Illustrative Scenario Area of land use change or Change in land management										
51% Goblin 2021-2025 2026-2030 Cumulative 2021-203										
Afforestation (ha)	46,500	92,500	139,000							
Grassland re-wetting (ha)	43,601	69,000	112,601							
Peatland rewetting (ha)	27,839	34,798	62,637							

^{*} Other options (such as improved management of mineral and organic soils under grasslands, and cropland management) which were not included in this modelling would reduce the amount of afforestation and rewetting required to achieve the assumed 51% reduction target.

Workshop arising from AICBRN talk AICBRN Biodiversity assessment of carbon budgets working group (ABC)

Attendees: Hannah Daly, David Styles, John Finn, Amy Taggart, James Moran, Ken Byrne, Caren Jarmain, Aoife Molloy, Roisin Moriarty

- 1. Updating sectoral recommendations in Gorman et al (2023)
- 2. Letter to CCAC on what is needed for assessment of biodiversity for carbon budgets
- 3. Incorporation of biodiversity considerations into existing modelling approaches

ACTIONS									
Action	When								
Recommendations on renewable energy developments	End of November 2023								
Recommendations on afforestation	End of November 2023								
Recommendations on peatland	End of November 2023								
Recommendations on rewetting drained soil	End of November 2023								
Recommendations on heavy soil	End of November 2023								
Recommendations on livestock	End of November 2023								
Letter to CCAC of recommendations for assessment of biodiversity for carbon budgets	End of November 2023								

What do we need for assessing biodiversity impact of carbon budgets?

- Biodiversity/ecology expertise on CCAC
- Appropriate resourcing of biodiversity at CBWG
- Literature review of approaches taken by other jurisdictions to biodiversity assessment of carbon budgets
- Context and scale dependence of biodiversity impacts need to be considered (spatially explicit), not just general statements
- Land use change is a leading driver of biodiversity change & loss climate action will entail major changes in land use
- Conflict over land use, ability to layer different land uses, total land area required for different actions, efficiency of land use
- Long term view important (post 2050)
- More detail in land balance models needed to account for heterogeneity and context dependence
- Coordination with land use review (phase 2), other landscape mapping projects (e.g. TerrainAl) important
- All-island basis for assessment of biodiversity impacts

Where & what type of onshore wind? Efficient delivery of renewable energy projects

Locating homes closer to businesses to reduce dependency on cars

Use timber in construction Reduce food waste

District heating
Retrofit homes that use peat

Ag & LULUCF
Income diversification
Greener forms of fertilizer (protected urea)
Feed additives to reduce methane
New forestry strategy implementation
Agroforestry

ADAPTATION

Coastal management strategy

50% of forestry products go into wood pulp, pallets etc.

Forests on poor land

Mark, Ken, James

Sensitivity mapping – policy makers reluctant to make maps

Forest maps (2010-12) coincide with HNV & nature restoration sites

HNV already has a high proportion of trees

No one wants to highlight the conflicts...

Land use dominated by different interest groups & separate gov depts, no integration of targets.

30 by 30 targets

Can broadleaf forests provide timber of good quality?

What would a biodiversity model look like?

TERRAIN-AI

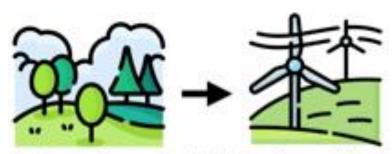
Win-wins

Tabular modelling for forestry – CBM model GCBM (current spatial model).

Impact of albedo as consequence of LUC on radiative forcing

LIDAR – surrogate of land mapping – add to land cover maps

Workshop with Land Cover Map – expert judgement on land use potential capacity – where should forestry, renewable energy go in this landscape? Participatory mapping exercise? Biophysical & social components. Storylines approach?


Nitrates derogation – "tidying up places that have been newly rented"

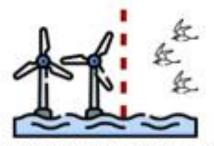
Sensitivity analysis – nature benefits, costs, trade-offs. Constrain to marginal areas? Constrain to low nature value areas.

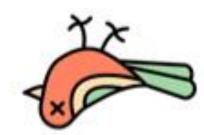
Random?

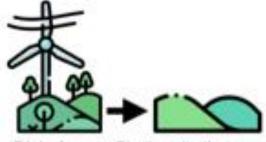
Multifunctional agricultural activities in the past – making ppl aware of past systems

Key recommendations for Energy sector

Land-use change: The installation of renewable technologies requires land to be converted from it's natural state or from other uses


Habitat loss: Land must be cleared for the installation of renewable technologies and their associated infrastructure connected habitats


Habitat fragmentation: Renewable energy infrastructure can separate previously


Disturbance: Construction and operation activities can disturb natural environments (e.g., noise)

Habitat displacement: Animals can be displaced from feeding and nesting areas

Injuries to animals: Operation of renewable energy facilities can lead to animal injuries and mortality

Disturbance: Biodiversity that has accumulated can be damaged by decommissioning

Key recommendations for Forestry

- 1. Avoid afforestation of naturally open habitats (e.g. grasslands) and deep peat soils
- 2. Restoration of degraded natural and semi-natural woodlands to improve carbon and biodiversity states
- 3. Set targets for native mixtures in plantation forests
- 4. Avoid using planted trees as bioenergy crops
- 5. Avoid displacing land-use (e.g., intensifying land-use on natural and semi-natural habitats)
- 6. Disincentivise the use of fire to clear land
- 7. Promote agroforestry initiatives
- 8. Rehabilitate peatlands on failed plantation sites
- 9. Prioritise and extend LiDAR surveys of Teagasc Signpost farms to estimate carbon sequestration of hedgerows and woody habitats on farmland

Key recommendations for Peatland

- 1. Promote and fund the rehabilitation of decommissioned industrial peatlands
- 2. Further regulate all peat extraction, including turf and horticultural peat production
- 3. Consider how turbary rights can be altered (to carbon & biodiversity sequestration rights) or purchased to reduce small scale peat extraction.
- 4. Identify and map peatland areas related to turf and horticultural peat extraction (non BNM areas)

Key Livestock recommendations

- 1. Prevent dairy expansion
- 2. Use new CAP to incentivise extensification of livestock farming and provision of alternative ecosystem services
- 3. Reduce the amount of N applied to pastures
- 4. Use clover and multi-species swards to reduce need for nitrogen application

Key recommendations for heavy soils

- 1. Multi-species swards should not be considered as a replacement for high nature value/semi natural grasslands but can be effective in reducing fertiliser needs.
- 2. Assess whole of life-cycle impact on GHG due to drainage of heavy soils and subsequent intensification for livestock farming.

Carbon budgets working group

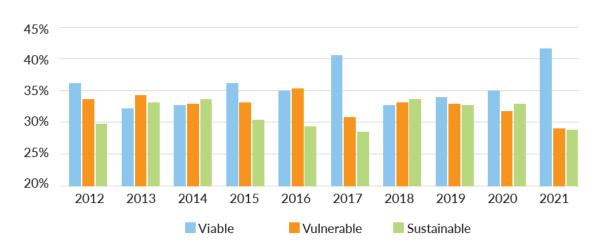
Biodiversity assessment of carbon budgets 2031-35 and 2036-2040

Key questions:

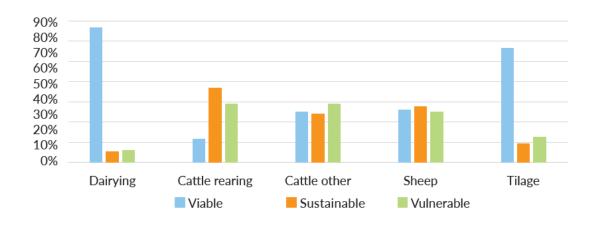
- What additional sectors should we consider for biodiversity impacts?
- Can we refine our previous recommendations?
- The devil is in the detail biodiversity impact will depend on where and at what scale changes are implemented
- How do we assess the land and sea capacity for different proposed budgets? Will there still be room for biodiversity?
- Land/sea sparing vs. land/sea sharing for climate action?

Carbon Budgets Working Group

Agriculture and Land Use

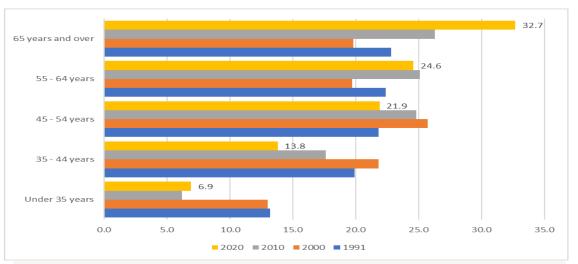

23rd November 2023

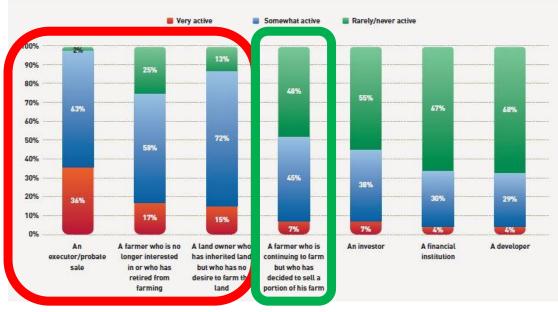
Basic Facts and Figures


- DAFM paints a dynamic picture of the Agriculture and Land Use Sectors
- In 2021, Ireland had 135,037 farms, 808,848 hectares of forestry and nearly 1,900 fishing vessels.
- The sector employed 170,400 people, or 7.1%, of the total workforce on the island.
- Average Family Farm Income increased for the third successive year, by 26% during 2021.
- Irish farmers received close to €1.9 billion in direct and capital payments under EU and nationally funded schemes.
- The value of agri-food exports for 2021 is a record €15.4 billion, which is up 51% on 2012.
- We exported our in-demand produce to over 180 countries, with our largest export being dairy, which exceeded €5 billion for the third year in a row. Agri-food exports accounted for 9.5% of total merchandising exports from Ireland.
- Output multipliers ranging from around 2.5 for beef, 2.0 for dairy and food processing and 1.75 for seafood. This compares with an average output multiplier of 1.4 for the rest of the economy and 1.2 for foreign owned firms.
- The Food & Drink sector accounted for 38% of all exports of Irish-owned firms in 2020.

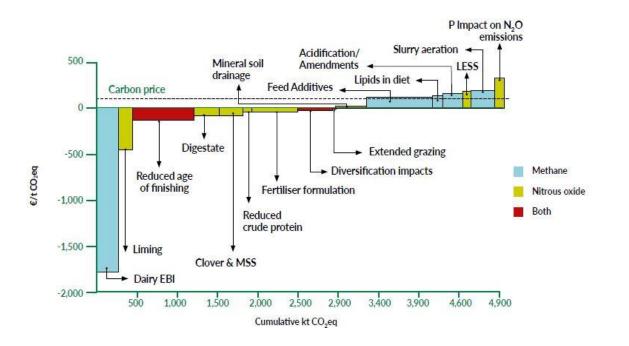
Sustainability at Farm Scale

- Farms earning less the €4k ~ 22% of all farm holders (Ag census data)
- Are ubiquitous across the country
- Not captured in the National Farm Survey analysis
- Specialist Dairy are most economically robust
- Specialist Tillage and Mixed Grazing reasonably robust
- Large majority of Specialist Beef and Sheep are not robust



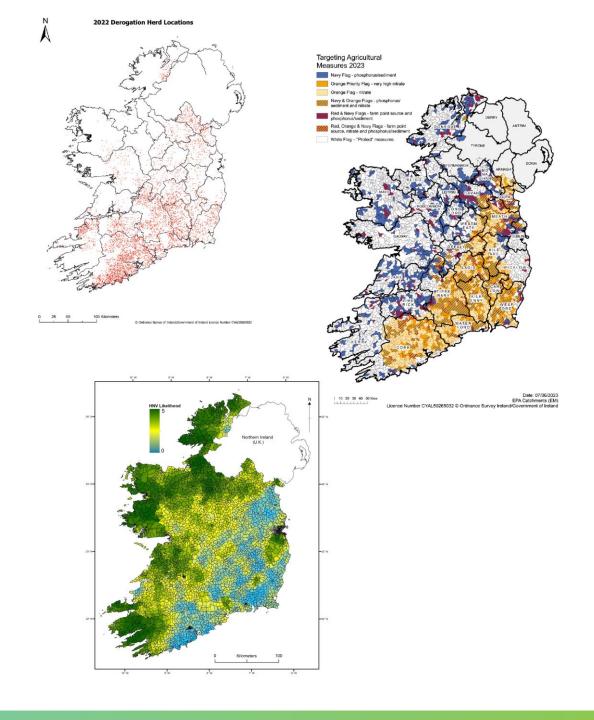

Farm Type	Less than €4k	€4k - €8k	€8k - €15k	€15k- €25k	€25k- €50k	€50k- €100k	Over €100k	All economic sizes	
Specialist									
beef	4.007	4007	000/	4.007	4.007	00/	407	==0/	
production	16%	19%	23%	19%	16%	6%	1%	55%	
Specialist									
sheep	27%	24%	22%	13%	10%	3%	0%	13%	
Specialist									
dairying	0%	0%	0%	0%	4%	16%	80%	11%	
Mixed field									
crops	97%	1%	0%	0%	0%	0%	1%	9%	
Mixed grazing									
livestock	4%	8%	16%	18%	25%	18%	12%	6%	
Specialist									
tillage	3%	5%	11%	13%	22%	22%	25%	3%	
Other	40%	3%	3%	2%	3%	5%	44%	1%	
Mixed crops									
and livestock	1%	2%	6%	13%	28%	27%	23%	1%	
All farms	22%	14%	17%	14%	13%	8%	12%		

Demographics and the Family Farm


- Farm holders are getting older
- Dairy farmers are the youngest cohort
- More analysis required on family labour on farm and succession
- New Entrants required?
- The most active cohorts putting land put up for sale are individuals leaving agriculture
- More analysis required on who is buying the land (and for what purpose)

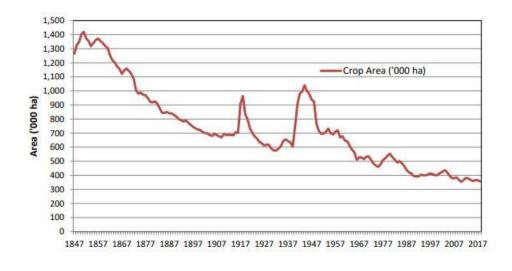
Marginal Abatement Cost Curve 2023

 Very ambitious adoption of measures required to achieve targets based on Scenarios in the analysis


Scenario/Pathway	2021-2030 Projected Emissions	% relative to 2018 Emissions Reduction Target
SEC	202	25%
S1P1	206.8	13.1%
S2P1	203.6	12.7%
S3P1	210.2	13.5%
S1P2	198.9	21.1%
S2P2	196.1	20.3%
S3P2	202.2	21.7%

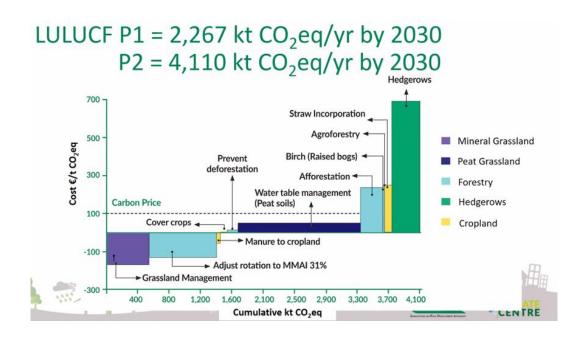
Negative price scenario should be also considered

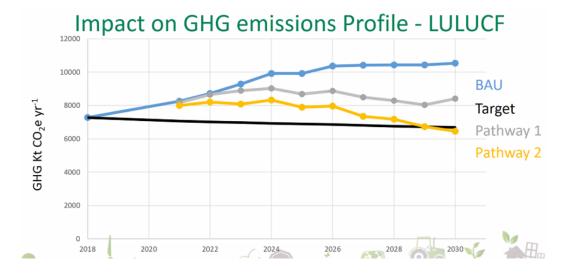
Nitrates Action Programme


- ~5% of farms
- ~11% of agricultural land
- Likely to increase land pieces and rent
- Potential adverse impact on Tillage and up take of Organic Farming
- Derogation under continual review. Crucial decisions due in 2026.
- Impact on emission uncertain, but likely to reduce overall emissions

Year	2019	2020	2021	2022*		
Number of derogation						
applicants	6,684	6,505	6,814	6,812		
Total land area under						
derogation (ha)	448,900	449,435	479,196	500,913		
Average farm size (ha) for						
derogation farms	67	69	71	73		
Average Number of LU's ²						
per derogation farm	156	134	163	Not yet available		

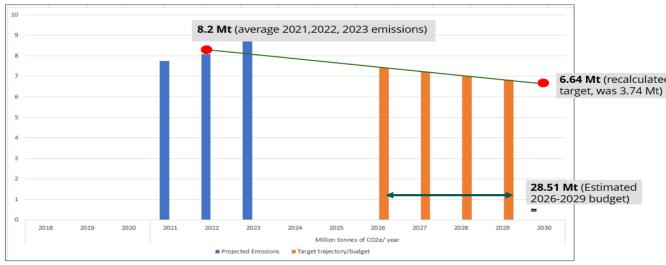
Land Use perspectives


- Forest cover at levels not seen since before 1600s
- Cropland area at lowest levels since 1850s
- ~1million hectares croplands converted to grassland
- Extent and condition of drained peatlands very uncertain
- Ireland lacks a coherent land use strategy.
- High risk of policy incoherence and market rather than policy driven impacts



Year	1000	500	1	500	1000	1350	1400	1656	1850	1910	1985	2022	2050
	BCE	BCE											
Forest	64.5%	68.4%	69.7%	50.6%	38.0%	13.0%	19.0%	2.5	0.9%	1.8%	5.9%	11.6%	18%
cover													

Land Use perspectives


- MACC analysis identifies a pathway to EU target
- Cost negative measures include grassland management and forest management
- Water table management is a low cost measure, delivering the largest emissions reduction.

EU LULUCF rules

- Ireland has an agreed target from LULUCF to reduced emissions by 0.626MtCO₂ by 2030
- The EU framework assumes a linear pathway to achieving this target, from a 2018 start point
- An implicit LULUCF sectoral budget is evaluated for the period 2026-2030
- This will be formalised on the basis of the 2025 Inventory submission (due in April 2027)
- The accounting rules for the period 2021-2025 are on the basis of the "old" Kyoto Protocol procedures.
 These are complex.
- Current projected emissions/removals from LUULCF sector pose a risk to compliance in the period to 2025, but this will be assessed on the basis of the 2027 submission.

